Advertisements
Advertisements
Question
The angle between lines `(x - 2)/2 = (y - 3)/(- 2) = (z - 5)/1` and `(x - 2)/1 = (y - 3)/2 = (z - 5)/2` is ______.
Options
30°
60°
45°
90°
Solution
The angle between lines `(x - 2)/2 = (y - 3)/(- 2) = (z - 5)/1` and `(x - 2)/1 = (y - 3)/2 = (z - 5)/2` is 90°.
Explanation:
Angle between lines `(x - x_1)/"a"_1 = ("y" - "y"_1)/"b"_1 = ("z" - "z"_1)/"c"_1` and `(x - x_2)/"a"_2 = ("y" - "y"_2)/"b"_2 = ("z" - "z"_2)/"c"_2` is given by `cos theta = (|"a"_1"a"_2 + "b"_1"b"_2 + "c"_1"c"_2|)/(sqrt("a"_1^2 + "b"_1^2 + "c"_1^2) sqrt("a"_2^2 + "b"_2^2 + "c"_2^2))`
Here, a1 = 2, b1 = - 2, c1 = 1
and a2 = 1, b2 = 2, c2 = 2
∴ cos θ = `(|2 xx 1 + (- 2) xx 2 + 1 xx 2|)/(sqrt((2)^2 + (- 2)^2 + (1)^2) sqrt((1)^2 + (2)^2 + (2)^2))`
`=> cos theta = (|2 - 4 + 2|)/(sqrt9 sqrt9)` = 0
`=> theta = pi/2`