Advertisements
Advertisements
Question
The angle between the line `bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda(hat"i" + hat"j" + hat"k")` and the plane `bar"r"*(2hat"i" - hat"j" + hat"k")` = 8 is ______.
Options
`pi/2`
`sin^-1(sqrt(2)/3)`
`pi/4`
`sin^-1(1/3)`
MCQ
Fill in the Blanks
Solution
The angle between the line `bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda(hat"i" + hat"j" + hat"k")` and the plane `bar"r"*(2hat"i" - hat"j" + hat"k")` = 8 is `sin^-1(sqrt(2)/3)`.
Explanation:
`bar"b" = hat"i" + hat"j" + hat"k"` and `bar"n" = 2hat"i" - hat"j" + hat"k"`
sin θ = `|(bar"b" * bar"n")/(|bar"b"|*|bar"n"|)|`
= `|((1)(2) + (1)(-1) + (1)(1))/(sqrt(1^2 + 1^2 + 1^2) sqrt(2^2 + (-1)^2 + 1^2))|`
∴ sin θ = `|(2 - 1 + 1)/(sqrt(3) sqrt(6))| = sqrt(2)/3`
⇒ θ = `sin^-1(sqrt(2)/3)`
shaalaa.com
Scalar Product of Vectors (Dot)
Is there an error in this question or solution?