Advertisements
Advertisements
Question
The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to ______.
Options
`(16sqrt(2))/6`
`(11sqrt(2))/6`
`(13sqrt(2))/6`
`(5sqrt(2))/6`
Solution
The area enclosed by y2 = 8x and y = `sqrt(2x)` that lies outside the triangle formed by y = `sqrt(2x)`, x = 1, y = `2sqrt(2)`, is equal to `underlinebb((13sqrt(2))/6)`.
Explanation:
Given curves are y2 = 8x and y = `sqrt(2)x`
Let us find the intersection point of both the curves:
`(sqrt(2)x)^2` = 8x
⇒ 2x2 = 8x
⇒ 2x2 – 4x = 0
⇒ x(x – 4) = 0
⇒ x = 0, 4
⇒ y = `0, 4sqrt(2)`
So intersection points are (0, 0) and `(4, 4sqrt(2))`
Let PQR be the triangle formed by y = `sqrt(2)x`, x = 1 and y = `2sqrt(2)`
⇒ P = `(1, 2sqrt(2))`, Q = `(1, sqrt(2))`, R = `(2, 2sqrt(2))`
Area of OPSRQ = `int_0^4(sqrt(8x) - sqrt(2x))dx`
= `[sqrt(8)(2/3x^(3/2)) - sqrt(2)/2x^2]_0^4`
= `(2sqrt(8))/3(4)^(3/2) - 1/sqrt(2)(4)^2`
= `(4sqrt(2))/3(8) - 16/sqrt(2)`
⇒ Area of OPSRQ = `((32sqrt(2))/3 - 8sqrt(2))`sq.units
Now, area of ΔPQR = `1/2 xx (PQ) xx (PR)`
= `1/2 xx (2sqrt(2) - sqrt(2)) xx 1`
= `1/2 xx sqrt(2)`
⇒ Area of ΔPQR = `sqrt(2)/2`sq.units
So, Required area = Area of shaded region
= Area of OPSRQ – Area of ΔPQR
= `(32sqrt(2))/3 - 8sqrt(2) - sqrt(2)/2`
= `(64sqrt(2) - 48sqrt(2) - 3sqrt(2))/6`
= `(13sqrt(2))/6`sq.units