Advertisements
Advertisements
Question
The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is
Options
`(4sqrt(2))/3 b^2 sqrt(a/(b - a)` sq.units
`(8sqrt(8))/3 a^2 sqrt(b/(b - a)` sq.units
`(4sqrt(2))/3 a^2 sqrt(b/(b - a)` sq.units
`(8sqrt(8))/3 b^2 sqrt(a/(b - a)` sq.units
Solution
`(8sqrt(8))/3 a^2 sqrt(b/(b - a)` sq.units
Explanation:
We have y2 = 4a(x + a) ...(i), a parabola with vertex (– a, 0)
And y2 = 4b(x – a) ...(ii), a parabola with vertex (a, 0)
Solving (i) and (ii), we get y = `+-a sqrt((8b)/(b - a)`
A = `2 int_0^((asqrt(8b))/(sqrt(b - a))) ((y^2/(4b) + a) - (y^2/(4b) - a)) dy`
= `2 int_0^((asqrt(8b))/(sqrt(b - a))) (2a - ((b - a)y^2)/(4ab)) dy`
= `2[2ay - (b - a)/(12ab) y^3]_0^((asqrt(8b))/(sqrt(b - a))`
= `2[2a xx (asqrt(8b))/sqrt(b - a) - (b - a)/(12ab) ((asqrt(8b))/(b - a))^3]`
= `(8a^2)/3 sqrt((8b)/(b - a))` sq.units