English

The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is -

Advertisements
Advertisements

Question

The area included between the parabolas y2 = 4a(x +a) and y2 = 4b(x – a), b > a > 0, is

Options

  • `(4sqrt(2))/3 b^2 sqrt(a/(b - a)` sq.units

  • `(8sqrt(8))/3 a^2 sqrt(b/(b - a)` sq.units

  • `(4sqrt(2))/3 a^2 sqrt(b/(b - a)` sq.units

  • `(8sqrt(8))/3 b^2 sqrt(a/(b - a)` sq.units

MCQ

Solution

`(8sqrt(8))/3 a^2 sqrt(b/(b - a)` sq.units

Explanation:

We have y2 = 4a(x + a) ...(i), a parabola with vertex (– a, 0)

And y2 = 4b(x – a) ...(ii), a parabola with vertex (a, 0)

Solving (i) and (ii), we get y = `+-a sqrt((8b)/(b - a)`

A = `2 int_0^((asqrt(8b))/(sqrt(b - a))) ((y^2/(4b) + a) - (y^2/(4b) - a)) dy`

= `2 int_0^((asqrt(8b))/(sqrt(b - a))) (2a - ((b - a)y^2)/(4ab)) dy`

= `2[2ay - (b - a)/(12ab) y^3]_0^((asqrt(8b))/(sqrt(b - a))`

= `2[2a xx (asqrt(8b))/sqrt(b - a) - (b - a)/(12ab) ((asqrt(8b))/(b - a))^3]`

= `(8a^2)/3 sqrt((8b)/(b - a))` sq.units

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×