English

The complex number z = x + iy which satisfy the equation |z-5iz+5i| = 1, lie on ______. -

Advertisements
Advertisements

Question

The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.

Options

  • the X-axis

  • the straight line y = 5

  • a circle passing through the origin

  • None of the above

MCQ
Fill in the Blanks

Solution

The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on the X-axis.

Explanation:

Given, `|(z - 5i)/(z + 5i)|` = 1

`\implies` |z – 5I| = |z + 5i|

∵ If |z – z1| = |z – z2|, then it is a perpendicular bisector of z1 and z2.


∴ Perpendicular bisector of (0, 5) and (0, – 5) is X-axis.

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×