English

The conditional statement ((p ∧ q) → ((∼p) ∨ r)) v (((∼p) ∨ r) → (p ∧ q)) is ______. -

Advertisements
Advertisements

Question

The conditional statement ((p ∧ q) `rightarrow` ((∼p) ∨ r)) v (((∼p) ∨ r) `rightarrow` (p ∧ q)) is ______.

Options

  • a tautology

  • a contradiction

  • equivalent to p ∧ q

  • equivalent to (∼p) ∨ r

MCQ
Fill in the Blanks

Solution

The conditional statement ((p ∧ q) `rightarrow` ((∼p) ∨ r)) v (((∼p) ∨ r) `rightarrow` (p ∧ q)) is a tautology.

Explanation:

Given conditional statement is

((p ∧ q) `rightarrow` ((∼p) ∨ r)) v (((∼p) ∨ r) `rightarrow` (p ∧ q))

⇒ Here, (A `rightarrow` B) is equal to (∼A ∨ B)

From given statement,

⇒ (∼p ∨∼q) ∨ (∼p ∨ r) ∨ (p ∧ q)

⇒ ∼p ∨ (r ∨∼q) ∨ p(∧(∼r ∨ q))

If negation of p and only p is present with the union, then it represents tautology.

shaalaa.com
Tautology, Contradiction, and Contingency
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×