Advertisements
Advertisements
Question
The cosine of the angle included between the lines r = `(2hat"i" + hat"j" - 2hat"k") + lambda (hat"i" - 2hat"j" - 2hat"k")` and r = `(hat"i" + hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" - 6hat"k")` where λ, μ ∈ R is.
Options
\[\frac{3}{21}\]
\[\frac{17}{21}\]
\[\frac{13}{21}\]
\[\frac{11}{21}\]
MCQ
Solution
\[\frac{11}{21}\]
Explanation:
Given lines,
r = `(2hat"i" + hat"j" - 2hat"k") + lambda (hat"i" - 2hat"j" - 2hat"k")`
r = `(hat"i" + hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" - 6hat"k")`
Here, `"b"_1 = hat"i" - 2hat"j" - 2hat"k"` and
`"b"_2 = 3hat"i" + 2hat"j" - 6hat"k"`
`therefore cos theta = ("b"_1*"b"_2)/(|"b"_1| |"b"_2|)`
`= ((hat"i" - 2hat"j" - 2hat"k")*(3hat"i" + 2hat"j" - 6hat"k"))/((sqrt(1 + 4 + 4))(sqrt(9 + 4 + 36)))`
`cos theta = (3 - 4 + 12)/(3 xx 7)`
`= 11/21`
shaalaa.com
Direction Cosines
Is there an error in this question or solution?