Advertisements
Advertisements
Question
The curve x = t2 + t + 1,y = t2 – t + 1 represents
Options
a parabola
a hyperbola
an ellipse
a rectangular hyperbola
MCQ
Solution
an ellipse
Explanation:
Given `x = t^2 + t + 1` .....(i)
`y = t^2 - t + 1` .....(ii)
∴ `x + y = 2(1 + t^2)` .....(iii)
`x - y = 2t` .....(iv)
Now, from equations (iii) and (iv), we get
`x + y = 2[1 + ((x - y)/2)^2]`
⇒ `x^2 + y^2 - 2xy - 2x - 2y + 4` = 0 ......(v)
On comparing with `ax^2 + 2hxy + by2 + 2gx + 2fy + c` = 0
We get, `a = 1, b = 1, c = 4, h = -1, g = - 1, f = -1`
Δ = `abc + 2fgh = af^2 - bg^2 - ch^2`
= `1.1.4 + 2(-1)(-1)(-1) - 1(-1)^2 - 1(-1)^2 - 4(-1)^2`
= `4 - 2 - 1 - 1 - 4 = - 4 = 0`
and `ab - h^2 = 1.1 - (-1)^2 = 1 - 1` = 0
So, it is equation of a parabola.
shaalaa.com
Is there an error in this question or solution?