Advertisements
Advertisements
Question
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to ______.
Options
1
2
3
all non zero values of n
MCQ
Fill in the Blanks
Solution
The curve `(x/a)^n + (y/b)^n` = 2, touches the line `x/a + y/b` = 2 at the point (a, b) for n is equal to all non zero values of n.
Explanation:
`(x/a)^n + (y/b)^n` = 2,
Differentiating above equation w.r.t.x, we get
`(nx^(n-1))/a^n + (ny^(n - 1))/b^n xx (dy)/(dx)` = 0
`(ny^(n - 1))/b^n xx (dy)/(dx) = -(nx^(n - 1))/a^n`
⇒ `(dy/dx) = -(nx^(n - 1))/a^n xx b^n/(ny^(n - 1))`
`(dy/dx) = - b^n/a^n xx (x/y)^(n - 1)`
`(dy/dx) = b^n/a^n xx (a/b)^(n - 1)`
= `-b^n/a^n xx a^n/b^n xx b/a`
`(dy)/(dx)|_((a"," b)) = - b/a`
Compare slope of given tangent slope = `-b/a`
Hence, it is valid for all values of n ≠ 0.
shaalaa.com
Is there an error in this question or solution?