Advertisements
Advertisements
Question
The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to
Options
1
– 1
2
None of these
MCQ
Solution
1
Explanation:
Let s = `sin^-1 ((2x)/(1 + x^2))` and t = `cos^-1 ((1 - x^2)/(1 + x^2))`
We have to find out `(ds)/(dt)`
Putting x = tan θ, we get
s = `sin^-1 [(2 tan theta)/(1 + tan^2 theta)]`
= `sin^-1 (sin 2 theta) = 2theta = 2 tan^-1x`
∴ `(ds)/(dx) = 2/(1 + x^2)`
And t = `cos^-1 ((1 - x^2)/(1 + x^2)) = cos^-1 ((1 - tan^2 theta)/(1 + tan^2 theta))`
= `cos^-1 (cos 2theta) = 2theta = 2 tan^-1x`
∴ `(dt)/(dx) = 2/(1 + x^2)`
∴ `(ds)/(dt) = ((ds)/(dx))/((dt)/(dx)) = 2/(1 + x^2) xx (1+ x^2)/2` = 1
shaalaa.com
Is there an error in this question or solution?