Advertisements
Advertisements
Question
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
Options
`(1 - x^2) ("d"^2y)/("d"x^2) + x ("d"y)/("d"x)` = 2
`(1 - x^2) ("d"^2y)/("d"x^2) - x ("d"y)/("d"x)` = 2
`(1 - x^2) ("d"^2y)/("d"x^2) + x ("d"y)/("d"x)` = 2y
None of these
Solution
`(1 - x^2) ("d"^2y)/("d"x^2) - x ("d"y)/("d"x)` = 2
Explanation:
y = (cos-1 x)2 + P (sin-1 x) + Q
⇒ y = (cos-1 x)2 + P `(pi/2 - cos^-1 x)` + Q .....`[because sin^-1 x + cos^-1 x = pi/2]`
⇒ y = (cos-1 x)2 - P cos-1 x + `(pi"P")/2` + Q ....(i)
Differentiating w.r.t. x, we get
`"dy"/"dx" = (- 2 cos^-1 x)/sqrt(1 - x^2) + "P"/sqrt(1 - x^2)`
`=> (1 - x^2) ("dy"/"dx")^2`
= (P - 2 cos-1 x)2
= 4(cos-1 x)2 - 4P cos-1 x + P2
= 4[(cos-1 x)2 - P cos-1 x] + P2
`= 4 ("y" - (pi"P")/2 - "Q") + "P"^2` ...[From (i)]
`therefore (1 - x^2) ("dy"/"dx")^2 = 4y - 2pi"P" - 4"Q" + "P"^2`
Differentiating w.r.t. x, we get
`(1 - "x"^2)*2 "dy"/"dx" * ("d"^2y)/"dx"^2 - 2x ("dy"/"dx")^2 = 4 "dy"/"dx"`
⇒ `(1 - x^2) ("d"^2y)/("d"x^2) - x ("d"y)/("d"x)` = 2