English

The differential equation obtained from the function y = a(x − a)2 is ____________. -

Advertisements
Advertisements

Question

The differential equation obtained from the function y = a(x − a)2 is ____________.

Options

  • `8"y"^2 = ("dy"/"dx")^2 ["x" + 1/(4"y") ("dy"/"dx")^2]^2`

  • `4"y"^2 = ("dy"/"dx")^2 ["x" - 1/(4"y") ("dy"/"dx")^2]^2`

  • `2"y"^2 = ("dy"/"dx")^2 ["x" - 1/(4"y") ("dy"/"dx")^2]^2`

  • `8"y"^2 = ("dy"/"dx")^2 ["x" - 1/(4"y") ("dy"/"dx")^2]^2`

MCQ
Fill in the Blanks

Solution

The differential equation obtained from the function y = a(x − a)2 is `underline(4"y"^2 = ("dy"/"dx")^2 ["x" - 1/(4"y") ("dy"/"dx")^2]^2)`.

Explanation:

We have,

y = a(x − a)2 ...............(i)

`"dy"/"dx"` = 2a(x − a)

`("dy"/"dx")^2` = 4a2 (x − a).........(ii)

From Eqs. (i) and (ii), we get

`(("dy"/"dx")^2)/"y" = (4"a"^2 ("x" - "a")^2)/("a" ("x" - "a")^2)` = 4a

∴ a = `(("dy"/"dx")^2)/(4"y")`

Putting, the value of a in Eq. (i), we get

y = `(("dy"/"dx")^2)/(4"y") ["x" - 1/(4"y") ("dy"/"dx")^2]^2`

4y2 = `("dy"/"dx")^2 ["x" - 1/(4"y") ("dy"/"dx")^2]^2`

shaalaa.com
Higher Order Derivatives
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×