Advertisements
Advertisements
Question
The differential equation y' = `y/(x + sqrt(xy))` has general solution given by:
(where C is a constant of integration)
Options
y = `Ce^(2(sqrt(x/y))`
y = `Ce^(-2sqrt(xy))`
y = `Ce^(2sqrt(xy))`
y = `Ce^(2(sqrt(y/x))`
MCQ
Solution
`bb(y = Ce^(2(sqrt(x/y)))`
Explanation:
We have, `dy/dx = y/(x + sqrt(xy))`
`\implies dx/dy = (x + sqrt(xy))/y = x/y + sqrt(x/y)`
Put x = vy
`\implies dx/dy = v + y (dv)/dy`
`\implies v + y (dv)/dy = v + sqrt(v)`
`\implies y (dv)/dy = sqrt(v)`
`\implies (dv)/sqrt(v) = dy/y`
`\implies int (dv)/sqrt(v) = int dy/y`
`\implies 2sqrt(v)` = log y + log C'
`\implies 2sqrt(x/y)` = log (C' y)
`\implies` C' y = `e^(2(sqrt(x/y))`
`\implies` y = `1/C^' e^(2(sqrt(x/y))` ...[∵ 1 / C' = C]
`\implies` y = `Ce^(2(sqrt(x/y))`
shaalaa.com
Is there an error in this question or solution?