Advertisements
Advertisements
Question
The equation of line passing through (3, -1, 2) and perpendicular to the lines `overline("r")=(hat"i"+hat"j"-hat"k")+lambda(2hat"i"-2hat"j"+hat"k")` and `overline("r")=(2hat"i"+hat"j"-3hat"k")+mu(hat"i"-2hat"j"+2hat"k")` is ______.
Options
`(x+3)/2=(y+1)/3=(z-2)/2`
`(x-3)/3=(y+1)/2=(z-2)/2`
`(x-3)/2=(y+1)/3=(z-2)/2`
`(x-3)/2=(y+1)/2=(z-2)/3`
Solution
The equation of line passing through (3, -1, 2) and perpendicular to the lines `overline("r")=(hat"i"+hat"j"-hat"k")+lambda(2hat"i"-2hat"j"+hat"k")` and `overline("r")=(2hat"i"+hat"j"-3hat"k")+mu(hat"i"-2hat"j"+2hat"k")` is `underline((x-3)/2=(y+1)/3=(z-2)/2)`.
Explanation:
Let a, b, c be the d.r.s. of the required line d.r.s. of the given lines are 2, -2, 1 and 1, -2, 2.
∴ 2a - 2b + c = 0 ....(i)
a - 2b + 2c = 0 ....(ii)
`therefore a/(-4+2)=(-b)/(4-1)=c/(-4+2)`
`=>a/-2=b/-3=c/-2`
∴ Equation of the required line is
`(x-3)/-2=(y+1)/-3=(z-2)/-2`
`=>(x-3)/2=(y+1)/3=(z-2)/2`