Advertisements
Advertisements
Question
The equation of tangent to the curve `(x/"a")^"n" + (y/"b")^"n"` = 2 at the point (a, b) is ______.
Options
`x/"a" = -y/"b"`
`x/"a" + y/"b"` = 2
`x/"a" = y/"b"`
`x/"a" + y/"b"` = n
Solution
The equation of tangent to the curve `(x/"a")^"n" + (y/"b")^"n"` = 2 at the point (a, b) is `x/"a" + y/"b"` = 2.
Explanation:
`(x/"a")^"n" + (y/"b")^"n"` = 2
Differentiating w.r.t x, we get
`"n"(x/"a")^("n" - 1) (1/"a") + "n"(y/"b")^("n" -1) (1/"b")(("d"y)/("d"x))` = 0
⇒ `"n"/"b" (y/"b")^("n" - 1) ("d"y)/("d"x) = (-"n")/"a" (x/"a")^("n" - 1)`
⇒ `("d"y)/("d"x) = (-"b")/"a" (x/"a")^("n" - 1) ("b"/y)^("n" - 1)`
Slope of tangent at (a, b) = `(("d"y)/("d"x))_((("a", "b")))`
= `(-"b")/"a" ("a"/"a")^("n" - 1) ("b"/"b")^("n" - 1)`
= `(-"b")/"a"`
Equation of tangent is `(y - "b") = (-"b")/"a"(x - "a")`
⇒ ay – ab = –bx + ab
⇒ ay + bx = 2ab
⇒ `x/"a" + y/"b"` = 2