Advertisements
Advertisements
Question
The freezing point depression constant for water is 1.86° K Kg mol-1. If 5 g Na2SO4 is dissolved in 45 g water, the depression in freezing point is 3.64°C. The Vant Hoff factor for Na2SO4 is ______.
Options
2.57
2.63
3.64
5.50
Solution
The freezing point depression constant for water is 1.86° K Kg mol-1. If 5 g Na2SO4 is dissolved in 45 g water, the depression in freezing point is 3.64°C. The Vant Hoff factor for Na2SO4 is 2.57.
APPEARS IN
RELATED QUESTIONS
The substance ‘X’, when dissolved in solvent water gave molar mass corresponding to the molecular formula ‘X3’. The van’t Hoff factor (i) is _______.
(A) 3
(B) 0.33
(C) 1.3
(D) 1
Calculate the amount of benzoic acid (C6H5COOH) required for preparing 250 mL of 0.15 M solution in methanol.
Define the term Abnormal molar mass
How van’t Hoff factor is related to the degree of dissociation?
Phenol dimerizes in benzene having van’t Hoff factor 0.54. What is the degree of association?
The values of Van’t Hoff factors for KCl, NaCl and K2SO4, respectively, are ______.
Geraniol, a volatile organic compound, is a component of rose oil. The density of the vapour is 0.46 g L–1 at 257°C and 100 mm Hg. The molar mass of geraniol is ______ g mol–1. (Nearest Integer)
[Given: R = 0.082 L atm K–1 mol–1]
The degree of dissociation of Ca(NO3)2 in a dilute aqueous solution containing 7 g of the salt per 100 g of water at 100°C is 70%. If the vapour pressure of water at 100°C is 760 mm. The vapour pressure of the solution is ______ mm.
Consider the reaction
\[\begin{bmatrix}\begin{array}{cc}
\phantom{.......}\ce{CH3}\\
\phantom{....}|\\
\ce{CH3CH2CH2 - \overset{⊕}{N} - CH2CH3}\\
\phantom{....}|\\
\phantom{.......}\ce{CH3}
\end{array}\end{bmatrix}\]\[\ce{OH^- ->[Heat] ?}\]
Which of the following is formed in a major amount?
When 19.5 g of F – CH2 – COOH (Molar mass = 78 g mol−1), is dissolved in 500 g of water, the depression in freezing point is observed to be 1°C. Calculate the degree of dissociation of F – CH2 – COOH.
[Given: Kf for water = 1.86 K kg mol−1]