English

The function f(x) = 2x3 – 15x2 + 36x + 6 is increasing in the interval - Mathematics

Advertisements
Advertisements

Question

The function f(x) = 2x3 – 15x2 + 36x + 6 is increasing in the interval

Options

  • (–∞, 2) ∪ (3, ∞)

  • (–∞, 2)

  • (–∞, 2] ∪ [3, ∞)

  • [3, ∞)

MCQ

Solution

(–∞, 2] ∪ [3, ∞)

Explanation:

Given, f(x) = 2x3 – 15x2 + 36x + 6

∴ f'(x) = 6x2 – 30x + 36

It f'(x) ≥ 0, then f(x) is increasing.

So, 6x2 – 30x + 36 ≥ 0


or x2 – 5x + 6 ≥ 0

or (x – 3)(x – 2) ≥ 0

∴ x ∈ (–∞, 2] ∪ [3, ∞)

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (December) Term 1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×