Advertisements
Advertisements
Question
The function `f(x) = log(1 + x) - (2x)/(2 + x)` is increasing on
Options
`(0, oo)`
`(- oo, 0)`
`(- oo, oo)`
None of these
MCQ
Solution
`(0, oo)`
Explanation:
Given `f(x) = log(1 + x) - (2x)/(2 + x)`
`f^'(x) = 1/(1 + x) - ((2 + x)(2) - 2x)/(2 + x)^2`
= `1/(1 + x) - 4/(2 + x)^2`
= `((2 + x)^2 - 4 - 4x)/((1 + x)(2 + x)^2`
= `x^2/((1 + x)(2 + x)^2` > 0 for all x ∈ (0, `oo`)
Thus, given function f(x) is increasing on (0, `oo`).
shaalaa.com
Is there an error in this question or solution?