Advertisements
Advertisements
Question
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
Options
(0, 1) ∪ (2, ∞)
(0, ∞)
(–∞, 1) ∪ (2, ∞)
(–∞, ∞)
MCQ
Fill in the Blanks
Solution
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on (0, 1) ∪ (2, ∞).
Explanation:
f(x) = `|x - 1|/x^2`
= `{{:((x - 1)/x^2,;,x ≥ 1),((1 - x)/x^2,;, x < 1):}`
f(x) = `|:(1/x - 1/x^2",", x ≥ 1),(1/x^2 - 1/x",", x < 1):}`
f'(x) = `{:((-1)/x^2 + 2/x^3",", x ≥ 1),((-2)/x^3 + 1/x^2",", x < 1):}`
for f'(x) < 0,
`x ≥ 1, 2/x^3 - 1/x^2` = 0
⇒ 2 – x < 0
⇒ x > 2
For `x < 1, 1/x^2 < 2/x^3`
`2/x < 0`
⇒ `(x - 2)/x < 0`
x∈(0, 2)
∴ Finally x∈(0, 1) ∪ (2, ∞)
shaalaa.com
Is there an error in this question or solution?