English

The function f(x) = x2 – sin x + 5 is continuous at x = -

Advertisements
Advertisements

Question

The function f(x) = x2 – sin x + 5 is continuous at x =

Options

  • `pi/6`

  • `pi/4`

  • `pi/2`

  • `pi`

MCQ

Solution

`pi`

Explanation:

Let `f(x) = x^2 - sin x + 5`

L.H.L = `lim_(x -> pi^-) (x^2 - sin x + 5)` put `x = pi - h`

= `lim_(h -> 0) [(pi - h)^2 - sin(pi - h) + 5]`

= `lim_(h -> 0) [pi^2 - 2pih + h^2 - sin h + 5] = pi^2 + 5`

R.H.L `lim_(x -> pi^+) [pi^2 - sin x + 5]`, put `x = pi + h`

= `lim_(h -> 0) [(pi + h)^2 - sin(pi + h) + 5]`

= `lim_(h -> 0) [pi^2 - 2pih + h^2 + sin h + 5] = pi^2 + 5`

`f(pi) = pi^2 + 5`

∴ L.H.L = R.H.L = `f(pi)`

Hence `f` is continuous at `x = pi`.

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×