Advertisements
Advertisements
Question
The function f(x) = x2 – sin x + 5 is continuous at x =
Options
`pi/6`
`pi/4`
`pi/2`
`pi`
MCQ
Solution
`pi`
Explanation:
Let `f(x) = x^2 - sin x + 5`
L.H.L = `lim_(x -> pi^-) (x^2 - sin x + 5)` put `x = pi - h`
= `lim_(h -> 0) [(pi - h)^2 - sin(pi - h) + 5]`
= `lim_(h -> 0) [pi^2 - 2pih + h^2 - sin h + 5] = pi^2 + 5`
R.H.L `lim_(x -> pi^+) [pi^2 - sin x + 5]`, put `x = pi + h`
= `lim_(h -> 0) [(pi + h)^2 - sin(pi + h) + 5]`
= `lim_(h -> 0) [pi^2 - 2pih + h^2 + sin h + 5] = pi^2 + 5`
`f(pi) = pi^2 + 5`
∴ L.H.L = R.H.L = `f(pi)`
Hence `f` is continuous at `x = pi`.
shaalaa.com
Is there an error in this question or solution?