Advertisements
Advertisements
Question
The general solution of `(1 + e^{x/y})dx + e^{x/y}(1 - x/y)dy = 0` is ______
Options
`ye^{y/x} + x = c`
`ye^y - x = c`
`ye^{x/y} + y = c`
`ye^{x/y} + x = c`
Solution
The general solution of `(1 + e^{x/y})dx + e^{x/y}(1 - x/y)dy = 0` is `underline(ye^{x/y} + x = c)`.
Explanation:
`(1 + e^{x/y})dx + e^{x/y}(1 - x/y)dy = 0`
⇒ `dx/dy = (-e^{x/y}(1 - x/y))/(1 + e^{x/y})` ............(i)
Put `x/y = u` ............(ii)
⇒ `dx/dy = u + y(du)/dy` ............(iii)
Substituting (ii) and (iii) in (i), we get
`u + y (du)/dy = (-e^u(1 - u))/(1 + e^u)`
∴ `y (du)/dy = (-e^u - u)/(1 + e^u)`
∴ `(1 + e^u)/(u + e^u) du = (-dy)/y`
Integrating on both sides, we get
`int(1 + e^u)/(u + e^u) du = -intdy/y`
∴ log|u + eu| = -log|y| + log|c|
∴ `log|x/y + e^{x/y}| = log|c/y|`
∴ `x/y + e^{x/y} = c/y`
∴ `ye^{x/y} + x = c`