Advertisements
Advertisements
Question
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
Options
x2 + y2 = c
2x2 – y2 = c
x2 + 2xy = c
y2 + 2xy = c
Solution
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is x2 + 2xy = c.
Explanation:
`(1 + y/x) + ("d"y)/(d"x)` = 0
⇒ `("d"y)/("d"x)= - (1 + y/x)` ......(i)
Put v = `y/x`
⇒ y = x ......(ii)
⇒ `("d"y)/("d"x) = "v" + x "dv"/("d"x)` ......(iii)
Substituting (ii) and (iii) in (i), we get
`"v" + x "dv"/("d"x)` = – 1 – v
⇒ `x "dv"/("d"x)` = – 1 – 2v
Integrating on both sides, we get
`int "dv"/(1 + 2"v") = - int ("d"x)/x + log"c"_1`
⇒ `1/2 log (1 + 2"v") = logx + log"c"_1`
⇒ `log(1 + 2 y/x) = 2 log "c"_1/x`
⇒ `(x + 2y)/x = ("c"_1/x)^2`
⇒ `x^2 + 2xy = "c"_1^2`
⇒ x2 + 2xy = c, where c = `"c"_1^2`