Advertisements
Advertisements
Question
The Gibb's energy change (in J) for the given reaction at [Cu2+] = [Sn2+] = 1 M and 298 K is ______.
\[\ce{Cu(s) + Sn^{2+}(aq) -> Cu^{2+}(aq) + Sn(s)}\]
`["E"_("Sn"^(2+)//"Sn")^0 = -0.16 "V", "E"_("Cu"^(2+)//"Cu")^0 = 0.34 "V", "Take F" = 96500 "C mol"^-1]`
Options
92000
94000
96500
98500
Solution
The Gibb's energy change (in J) for the given reaction at [Cu2+] = [Sn2+] = 1 M and 298 K is 96500.
\[\ce{Cu(s) + Sn^{2+}(aq) -> Cu^{2+}(aq) + Sn(s)}\]
`["E"_("Sn"^(2+)//"Sn")^0 = -0.16 "V", "E"_("Cu"^(2+)//"Cu")^0 = 0.34 "V", "Take F" = 96500 "C mol"^-1]`
Explanation:
Cell reaction:
Anode: \[\ce{Cu(s) -> Cu^{2+}(aq) + 2e^-}\]
Cathode: \[\ce{Sn^{2+}(aq) + 2e^- -> Sn(s)}\]
Overall reaction: \[\ce{Cu(s) + Sn^{2+}(aq) -> Cu^{2+}(aq) + Sn(g)}\]
`"E"_"cell"^0 = "E"_"cathode"^0 - "E"_"anode"^0`
= `"E"_("Sn"^(2+)//"Sn")^0 - "E"_("Cu"^(2+)//"Cu")^0`
= 0.16 − 0.34 V
= − 0.50 V
Gibbs energy change (ΔG) = `-"nF E"_"cell"^0`
= − 2 × 96500 C × −0.50 V
= + 96500 J