Advertisements
Advertisements
Question
The half-life of `""_82^210Pb` is 22.3 y. How long will it take for its activity 0 30% of the initial activity?
Solution
T = 22.3 y, A = 0.3 A0
By the radioactive decay law, N = N0e−λt
∴ λN = λN0e−λt
∴ A = A0e−λt
where A0 = λN0 is the initial activity and A = λN is the activity at time t.
∴ λt = loge `A_0/A = 2.303 log_10 (A_0)/A`
∴ t = `2.303/λ log_10 (A_0)/A`
= `(2.303 T)/0.693 log_10 (A_0)/A` (∵ λ = `0.693/T`)
= `(2.303 xx 22.3)/0.693 log_10 (10/3)`
= `(2.303 xx 22.3)/0.693 (log_10 10 - log_10 3)`
= `(2.303 xx 22.3)/0.693 (1.0000 - 0.4771)`
log 2.303 = 0.3623
log 22.3 = + 1.3483
log 0.5229 = + `underline(overline(1).7184)`
1.4290
log 0.693 = `underline(- overline(1).8407`
1.5883
antilog 1.5883 = 38.76
= `(2.303 xx 22.3)/0.693 xx 0.5229`
= 38.76 y
It will take 38.76 y for the activity of `""_82^210 Pb` to reduce to 30% of the initial activity.