Advertisements
Advertisements
Question
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
Options
1.50
1.60
1.70
1.80
MCQ
Fill in the Blanks
Solution
The integral `int_0^2||x - 1| -x|dx` is equal to 1.50.
Explanation:
`int_0^2||x - 1| -x|dx`
= `int_0^1|-x + 1 - x|dx + int_1^2|x - 1 - x|dx`
= `int_0^1|-2x + 1|dx + int_1^2|-1|dx`
= `int_0^(1/2) + (-2x + 1)dx + int_(1/2)^1 -(-2x + 1)dx + [x]_1^2`
= `[-x^2 + x]_0^(1/2) + [x^2 - x]_(1/2)^1 + 1`
= `(-1/4 + 1/2) + 1 - 1 - 1/4 + 1/2 + 1`
= `1/4 + 1/4 + 1`
= `3/2`
= 1.50
shaalaa.com
Is there an error in this question or solution?