Advertisements
Advertisements
Question
The integrating factor of differential equation `(1 - y)^2 (dx)/(dy) + yx = ay(-1 < y < 1)`
Options
`1/(y^2 - 1)`
`1/sqrt(y^2 - 1)`
`1/(1 - y^2)`
`1/sqrt(1 - y^2)`
MCQ
Solution
`1/sqrt(1 - y^2)`
Explanation:
`(1 - y^2) (dx)/(dy) + yx = 2y` or `(dx)/(dy) + y/(1 - y^2) x = - y/sqrt(1 - y^2)`
∴ `int y/(1 - y^2) dy = - 1/2 int (-2y)/(1 - y^2) dy = - 1/2 log (1 - y^2)`
= `log(1 - y)^(1/2) = log(1/sqrt(1 - y^2))`
I.F. = `e^(int pdx) = e^(log 1/sqrt(1 - y^2)) = 1/sqrt(1 - y^2)`
shaalaa.com
Is there an error in this question or solution?