Advertisements
Advertisements
Question
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
Options
`(- oo, sqrt(11/3))`
`(- oo, sqrt(11/5))`
`(sqrt(11/3), oo)`
`(sqrt(11/5), oo)`
MCQ
Solution
`(sqrt(11/3), oo)`
Explanation:
`f(x)` is defined if `3x^2 - 4x + 5 ≥ 0`
⇒ `3[x^2 - 4/3x + 5/3] ≥ 0`
⇒ `3[(x - 2/3)^2 + 11/9] ≥ 0`
Which is true for all real x
∴ Domain of `f(x) = (- oo, oo)`
⇒ Let `y = sqrt(3x^2 - 4x + 5)`
⇒ `y^2 = 3x^2 - 4x + 5`
i.e. `3x^2 - 4x + (5 - y^2)` = 0
For x to be real, `16 - 12 (5 - y^2) ≥ 0`
⇒ `y ≥ sqrt(11/3)`
∴ Range of `y = (sqrt(11/3, oo))`
shaalaa.com
Is there an error in this question or solution?