Advertisements
Advertisements
Question
The length of time (in minutes) that a certain person speaks on the telephone is found to be random phenomenon, with a probability function specified by the probability density function f(x) as
f(x) = `{{:("Ae"^((-x)/5)",", "for" x ≥ 0),(0",", "otherwise"):}`
Find the value of A that makes f(x) a p.d.f.
Solution
Since f(x) is a probability density Function
`int_(-oo)^oo "f"(x) "d"x` = 1
Here `int_0^oo "Ae"^((-x)/5) "d"x` = 1
`"A"(int "e"^((-x)/5)/(((-1)/5)))_0^oo` = 1
`- 5"A"("e"^((-x)/5))` = 1
` - 5["e"^-oo - "e"^0]` = 1
`- 5"A"(0 - 1)` = 1
5A = 1
⇒ A = `1/5`
APPEARS IN
RELATED QUESTIONS
Construct cumulative distribution function for the given probability distribution.
X | 0 | 1 | 2 | 3 |
P(X = x) | 0.3 | 0. | 0.4 | 0.1 |
The discrete random variable X has the probability function
X | 1 | 2 | 3 | 4 |
P(X = x) | k | 2k | 3k | 4k |
Show that k = 0 1
Two coins are tossed simultaneously. Getting a head is termed a success. Find the probability distribution of the number of successes
Describe what is meant by a random variable
Choose the correct alternative:
Which one is not an example of random experiment?
Choose the correct alternative:
The probability function of a random variable is defined as
X = x | – 1 | – 2 | 0 | 1 | 2 |
P(x) | k | 2k | 3k | 4k | 5k |
Then k is equal to
Choose the correct alternative:
The probability density function p(x) cannot exceed
The probability function of a random variable X is given by
p(x) = `{{:(1/4",", "for" x = - 2),(1/4",", "for" x = 0),(1/2",", "for" x = 10),(0",", "elsewhere"):}`
Evaluate the following probabilities
P(X ≤ 0)
Let X be a random variable with a cumulative distribution function.
F(x) = `{{:(0",", "if" x < 0),(x/8",", "if" 0 ≤ x ≤ 1),(1/4 + x/8",", "if" 1 ≤ x ≤ 2),(3/4 + x/12",", "if" 2 ≤ x < 3),(1",", "for" 3 ≤ x):}`
Is X a discrete random variable? Justify your answer
The probability distribution function of a discrete random variable X is
f(x) = `{{:(2k",", x = 1),(3k",", x = 3),(4k",", x = 5),(0",", "otherwise"):}`
where k is some constant. Find P(X > 2)