Advertisements
Advertisements
Question
The locus of the mid-point of the chords of the hyperbola `(x^2/a^2) - (y^2/b^2)` = 1 passing through a fixed point (α, β) is a hyperbola with centre at `(α/2, β/2)` It equation is ______.
Options
`(x - α/2)^2/a^2 - (y - β/2)^2/b^2 = α^2/(4a^2) - β^2/(4b^2)`
`(x + α/2)^2/a^2 - (y - β/2)^2/b^2 = α^2/(4a^2) + β^2/(4b^2)`
`(x - α/2)^2/a^2 - (y - β/2)^2/b^2 = α/(4a^2) - β^2/(4b^2)`
`(x + α/2)^2/a^2 - (y + β/2)^2/b^2 = α^2/(4a^2) β^2/(4b^2)`
Solution
The locus of the mid-point of the chords of the hyperbola `(x^2/a^2) - (y^2/b^2)` = 1 passing through a fixed point (α, β) is a hyperbola with centre at `(α/2, β/2)` It equation is `underlinebb((x - α/2)^2/a^2 - (y - β/2)^2/b^2 = α^2/(4a^2) - β^2/(4b^2))`.
Explanation:
Given equation of hyperbola `x^2/a^2 - y^2/b^2` = 1
Let the coordinates of the middle point of the chord be (h, k)
Applying T = S, will give equation of chord with mid-point as (h, k)
So `((xh)/a^2 - (yk)/b^2 - 1) = (h^2/a^2 - k^2/b^2 - 1)`
This line passes through (α, β) so we get
`(αh)/a^2 - (βk)/b^2 - 1 = h^2/a^2 - k^2/b^2 - 1`
⇒ `h^2/a^2 - (αh)/a^2 - k^2/b^2 + (βk)/b^2` = 0
⇒ `[h^2/a^2 - 2. h/a.α/(2α) + (α/(2α))^2] - [(k/b)^2 - 2. k/b + β/(2b) + (β/(2b))^2] = (α/(2a))^2 - (β/(2b))^2`
`("Hint: Adding" [(α/(2α))^2 - (β/(2b))^2]"on L.H.S and R.H.S")`
⇒ `(h/a - α/(2a))^2 - (k/b - β/(2b))^2 = α^2/(4a^2) - β^2/(4b^2)`
⇒ `(h - α/2)^2/a^2 - (k - β/2)^2/b^2 = α^2/(4a^2) - β^2/(4b^2)`
Hence the locus will be `(x - α/2)^2/a^2 - (y - β/2)^2/b^2 = α^2/(4a^2) - β^2/(4b^2)` with centre at `(α/2, β/2)`