English
Karnataka Board PUCPUC Science Class 11

The Magnifying Power of a Converging Lens Used as a Simple Microscope is - Physics

Advertisements
Advertisements

Question

The magnifying power of a converging lens used as a simple microscope is `(1+D/f).` A compound microscope is a combination of two such converging lenses. Why don't we have magnifying power `(1+D/f_0)(1+D/f_0)`?In other words, why can the objective not be treated as a simple microscope but the eyepiece can?

Short Note

Solution

In a simple microscope, the converging lens is used to magnify the object. It is done by the eyepiece in a compound microscope. But the purpose of the objective lens is the same, i.e., to form an enlarged, real and inverted image of the object at a distance less than the focal length of the eyepiece. So, its magnification power cannot be expressed in a way it is expressed for a simple microscope.

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Optical Instruments - Short Answers [Page 430]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 19 Optical Instruments
Short Answers | Q 7 | Page 430

RELATED QUESTIONS

A giant refracting telescope has an objective lens of focal length 15 m. If an eye piece of focal length 1.0 cm is used, what is the angular magnification of the telescope ?


Draw a labelled ray diagram showing the formation of a final image by a compound microscope at least distance of distinct vision


A compound microscope consists of an objective lens of focal length 2.0 cm and an eyepiece of focal length 6.25 cm separated by a distance of 15 cm. How far from the objective should an object be placed in order to obtain the final image at

  1. the least distance of distinct vision (25 cm), and
  2. infinity?

What is the magnifying power of the microscope in each case?


When viewing through a compound microscope, our eyes should be positioned not on the eyepiece but a short distance away from it for best viewing. Why? How much should be that short distance between the eye and eyepiece?


Define the magnifying power of a compound microscope when the final image is formed at infinity. Why must both the objective and the eyepiece of a compound microscope has short focal lengths? Explain.


Draw a ray diagram showing image formation in a compound microscope ?


How is 'limit of resolution' related to resolving power of a microscope ?


Distinguish between myopia and hypermetropia. Show diagrammatically how these defects can be corrected.


Draw a ray diagram to show the working of a compound microscope. Deduce an expression for the total magnification when the final image is formed at the near point.

In a compound microscope, an object is placed at a distance of 1.5 cm from the objective of focal length 1.25 cm. If the eye piece has a focal length of 5 cm and the final image is formed at the near point, estimate the magnifying power of the microscope.


A simple microscope using a single lens often shows coloured image of a white source. Why?


A compound microscope consists of an objective of focal length 1 cm and an eyepiece of focal length 5 cm. An object is placed at a distance of 0.5 cm from the objective. What should be the separation between the lenses so that the microscope projects an inverted real image of the object on a screen 30 cm behind the eyepiece?


A lady uses + 1.5 D glasses to have normal vision from 25 cm onwards. She uses a 20 D lens as a simple microscope to see an object. Find the maximum magnifying power if she uses the microscope (a) together with her glass (b) without the glass. Do the answers suggest that an object can be more clearly seen through a microscope  without using the correcting glasses?


compound microscope consists of two convex lenses of focal length 2 cm and 5 cm. When an object is kept at a distance of 2.1 cm from the objective, a virtual and magnified image is fonned 25 cm from the eye piece.  Calculate the magnifying power of the microscope.


Define the magnifying power of a microscope in terms of visual angle.


A microscope is focussed on a mark on a piece of paper and then a slab of glass of thickness 3 cm and refractive index 1.5 is placed over the mark. How should the microscope be moved to get the mark in focus again?


An angular magnification of 30X is desired using an objective of focal length 1.25 cm and an eye piece of focal length 5 cm. How will you set up the compound microscope for the final image formed at least distance of distinct vision?


A compound microscope consists of two converging lenses. One of them, of smaller aperture and smaller focal length, is called objective and the other of slightly larger aperture and slightly larger focal length is called eye-piece. Both lenses are fitted in a tube with an arrangement to vary the distance between them. A tiny object is placed in front of the objective at a distance slightly greater than its focal length. The objective produces the image of the object which acts as an object for the eye-piece. The eye-piece, in turn, produces the final magnified image.

The focal lengths of the objective and eye-piece of a compound microscope are 1.2 cm and 3.0 cm respectively. The object is placed at a distance of 1.25 cm from the objective. If the final image is formed at infinity, the magnifying power of the microscope would be:


In a compound microscope an object is placed at a distance of 1.5 cm from the objective of focal length 1.25 cm. If the eye-piece has a focal length of 5 cm and the final image is formed at the near point, find the magnifying power of the microscope.


What is meant by a microscope in normal use?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×