English

The manufacturing company produces x items at the total cost of ₹ 180 + 4x. The demand function for this product is P = (240 – x). Find x for which revenue is increasing - Mathematics and Statistics

Advertisements
Advertisements

Question

The manufacturing company produces x items at the total cost of ₹ 180 + 4x. The demand function for this product is P = (240 – x). Find x for which revenue is increasing

Sum

Solution

Let C be the total cost function and R be the revenue

∴ C = 180 + 4x

Now, Revenue = Price × Demand

∴ R = P × x = (240 – x)x

∴ R = 240x – x2

∴ `"dR"/("d"x)` = 240 – 2x

= 2(120 – x)

Since revenue R is an increasing function, `"dR"/("d"x)` > 0

∴ 2(120 – x) > 0

∴ 120 – x > 0

∴ 120 > x

∴ x < 120 

∴ The revenue is increasing for x < 120.

shaalaa.com
Application of Derivatives to Economics
  Is there an error in this question or solution?
Chapter 1.4: Applications of Derivatives - Q.5

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Applications of Derivatives
Exercise 4.4 | Q 4.1 | Page 112

RELATED QUESTIONS

Find the elasticity of demand, if the marginal revenue is 50 and price is Rs 75.


The demand function of a commodity at price P is given as, D = `40 - "5P"/8`. Check whether it is increasing or decreasing function.


The total cost function for production of x articles is given as C = 100 + 600x – 3x2 . Find the values of x for which total cost is decreasing.


The total cost of manufacturing x articles C = 47x + 300x2 – x4 . Find x, for which average cost is decreasing


If the demand function is D = `((p + 6)/(p − 3))`, find the elasticity of demand at p = 4.


Find the price for the demand function D = `((2"p" + 3)/(3"p" - 1))`, when elasticity of demand is `11/14`.


For the demand function D = 100 – `p^2/2`. Find the elasticity of demand at p = 10 and comment on the results.


For the demand function D = 100 – `"p"^2/2`. Find the elasticity of demand at p = 6 and comment on the results.


A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price is given as p = 120 – x. Find the value of x for which revenue is increasing.


Find MPC, MPS, APC and APS, if the expenditure Ec of a person with income I is given as Ec = (0.0003) I2 + (0.075) I ; When I = 1000.


The manufacturing company produces x items at the total cost of ₹ 180 + 4x. The demand function for this product is P = (240 − 𝑥). Find x for which profit is increasing


A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price per item is given as p = 120 – x. Find the value of x for which revenue is increasing

Solution: Total cost C = 40 + 2x and Price p = 120 – x

Revenue R = `square`

Differentiating w.r.t. x,

∴ `("dR")/("d"x) = square`

Since Revenue is increasing,

∴ `("dR")/("d"x)` > 0

∴ Revenue is increasing for `square`


A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price per item is given as p = 120 – x. Find the value of x for which profit is increasing

Solution: Total cost C = 40 + 2x and Price p = 120 − x

Profit π = R – C

∴ π = `square`

Differentiating w.r.t. x,

`("d"pi)/("d"x)` = `square`

Since Profit is increasing,

`("d"pi)/("d"x)` > 0

∴ Profit is increasing for `square`


Complete the following activity to find MPC, MPS, APC and APS, if the expenditure Ec of a person with income I is given as:

Ec = (0.0003)I2 + (0.075)I2

when I = 1000


If elasticity of demand η = 0 then demand is ______.


If 0 < η < 1 then the demand is ______.


In a factory, for production of Q articles, standing charges are ₹500, labour charges are ₹700 and processing charges are 50Q. The price of an article is 1700 - 3Q. Complete the following activity to find the values of Q for which the profit is increasing.

Solution: Let C be the cost of production of Q articles.

Then C = standing charges + labour charges + processing charges

∴ C = `square` 

Revenue R = P·Q = (1700 - 3Q)Q = 1700Q- 3Q2

Profit `pi = R - C = square`

 Differentiating w.r.t. Q, we get

`(dpi)/(dQ) = square`

If profit is increasing , then `(dpi)/(dQ) >0`

∴ `Q < square` 

Hence, profit is increasing for `Q < square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×