Advertisements
Advertisements
Question
The maximum area of a right angled triangle with hypotenuse h is:
Options
`h^2/(2sqrt(2)`
`h^2/2`
`h^2/sqrt(2)`
`h^2/2`
MCQ
Solution
`h^2/2`
Explanation:
Given that the hypotenuse of right-angled triangle is h.
Let base = b
Altitude or (perpendicular) = `sqrt(h^2 - b^2)`
Area of triangle = `1/2` base × altitude
= `1/2 xx b xx sqrt(h^2 - b^2)`
⇒ `(dA)/(db) = 1/2 [sqrt(h^2 - b^2) + b xx (-2b)/(2sqrt(h^2 - b^2))]`
= `1/2 [sqrt(h^2 - b^2) - b^2/sqrt(h^2 - b^2)]`
= `1/2 ([h^2 - 2b^2])/sqrt(h^2 - b^2)`
For maximum area, `(dA)/(db)` = 0
⇒ `1/2 ([h^2 - 2b^2])/sqrt(h^2 - b^2)` = 0
⇒ `[h^2 - 2b^2]` = 0
⇒ `h^2 = 2b^2` = 0
⇒ `b = h/sqrt(2)`
A = `1/2 xx b xx sqrt(h^2 - b^2)`
= `1/2 xx h/sqrt(2) xx sqrt(h^2 - h^2/2)`
= `h^2/4`
shaalaa.com
Application of Determinants - Area of a Triangle Using Determinants
Is there an error in this question or solution?