Advertisements
Advertisements
Question
The mean breaking strength of cables supplied by a manufacturer is 1,800 with a standard deviation of 100. By a new technique in the manufacturing process it is claimed that the breaking strength of the cables has increased. In order to test this claim a sample of 50 cables is tested. It is found that the mean breaking strength is 1,850. Can you support the claim at 0.01 level of significance?
Solution
Sample size n = 50
Sample mean `bar(x)` = 1800
Sample SD S = 100
Population mean µ = 1850
Null hypothesis H0: µ = 1850
Level of significance µ = 0.01
Test statistic:
z = `(bar(x) - mu)/(sigma/sqrt("n")) "N" ∼ (0.1)`
z = `(1800 - 1840)/((100/sqrt(50))`
= `(-50)/sqrt(100/(7.071)`
= `(-50 xx 7.0711)/100`
= `7.0711/2`
= – 3.5355
∴ z = – 3.536
Calculated value |z| = 3.536
Critical value at 1% level of significance is `"Z"_(("a")/2)` = 2.58
Inference:
Since the calculated value is greater than table
i.e. `"Z"_(("a")/2)` at 1% level of significance, the null hypothesis is rejected
Therefore we conclude that we is rejected.
Therefore we conclude that we can not support we conclude that we can support the claim of 0.01 of significance.
APPEARS IN
RELATED QUESTIONS
Define alternative hypothesis
Define critical value
What is single tailed test
The average score on a nationally administered aptitude test was 76 and the corresponding standard deviation was 8. In order to evaluate a state’s education system, the scores of 100 of the state’s students were randomly selected. These students had an average score of 72. Test at a significance level of 0.05 if there is a significant difference between the state scores and the national scores
Choose the correct alternative:
Errors in sampling are of
Choose the correct alternative:
Type I error is
Choose the correct alternative:
Type II error is
Choose the correct alternative:
The standard error of sample mean is
Explain the procedures of testing of hypothesis
Explain in detail the test of significance of a single mean