Advertisements
Advertisements
Question
The mean marks (out of 100) of boys and girls in an examination are 70 and 73 respectively. If the mean marks of all the students in that examination are 71,
find the ratio of the number of boys to the number of girls.
Solution
Let the number of boys and girls be x and y respectively.
Now,
Given, Mean marks of x boys in the examination = 70
⇒ Sum of marks of x boys in the examination = 70x
Given, Mean marks of y girls in the examination = 73
⇒ Sum of marks of y girls in the examination = 73y
Given, Mean marks of all students ( x + y ) in the examination = 71
⇒ Sum of marks of all students ( x + y ) students in examination = 71( x + y )
Now, the Sum of marks of all students ( x + y ) students in the examination
⇒ Sum of marks of x boys in the examination + Sum of marks of y girls in the examination
⇒ 71( x + y ) = 70x + 73y
⇒ 71x + 71y = 70x + 73y
⇒ x = 2y
⇒ `x/y = 2/1`
⇒ x: y = 2 : 1
Thus, the ratio of the number of boys to the number of girls is 2 : 1.
APPEARS IN
RELATED QUESTIONS
Find the mean of 43, 51, 50, 57 and 54.
Find the mean of the first ten odd natural numbers.
In a series of tests, A appeared for 8 tests. Each test was marked out of 30 and averages 25. However, while checking his files, A could only find 7 of the 8 tests. For these, he scored 29, 26, 18, 20, 27, 24 and 29.
Determine how many marks he scored for the eighth test.
Find x if 9, x, 14, 18 x, x, 8, 10 and 4 have a mean of 11.
The mean of 200 items was 50. Later on, it was discovered that two items were misread as 92 and 8 instead of 192 and 88.
Find the correct mean.
If different values of variable x are 9.8, 5.4, 3.7, 1.7, 1.8, 2.6, 2.8, 8.6, 10.5 and 11.1;
find
(i) the mean ` barx `
(ii) the value of ` sum (x_i - barx)`
The mean of 100 observations is 40. It is found that an observation 53 was misread as 83.
Find the correct mean.
The mean of 5 numbers is 18. If one number is excluded, the mean of the remaining number becomes 16. Find the excluded number.
The mean of 40 observations was 160. It was detected on rechecking that the value of 165 was wrongly copied as 125 for computation of mean. Find the correct mean.
If `bar"X"` is the mean of n observations x1, x2, x3,..., xn then the mean of `x_1/"a", x_2/"a", x_3/"a",...,x_"n"/"a" "is" bar"X"/"a"`, where a is an non-zero number.
i.e., if each observation is divided by a non-zero number, then the mean is also divided by it.