Advertisements
Advertisements
Question
The means of two samples of sizes 60 and 120 respectively are 35.4 and 30.9 and the standard deviations are 4 and 5. Obtain the standard deviation of the sample of size 180 obtained by combining the two samples.
Options
5.15
26.5
32.4
51.5
Solution
5.15
Explanation:
Let n1 = 60, n2 = 120, `barx_1` = 35.4, `barx_2` = 30.9, σ1 = 4, σ2 = 5
Combined mean `(barx_e)`
`=("n"_1barx_1 + "n"_2barx_2)/("n"_1 + "n"_2)`
`= (60 xx 35.4 + 120 xx 30.9)/(60 + 120)`
`= (2124 + 3708)/180`
`= 5832/180`
= 32.4
now, d1 = `barx_1 - barx_e = 35.4 - 32.4 = 3`
d2 = `barx_2 - barx_e` = 30.9 - 32.4 = - 1.5
∴ Combined standard deviation (σe)
`= sqrt(("n"_1 (sigma_1^2 + "d"_1^2) + "n"_2 (sigma_2^2 + "d"_2^2))/("n"_1 + "n"_2))`
`= sqrt((60(4^2 + 3^2) + 120 [5^2 + (- 1.5)^2])/(60 + 120))`
`= sqrt((60(16 + 9) + 120(25 + 2.25))/(180))`
`= sqrt((60(25) + 120(27.25))/180)`
`= sqrt((1500 + 3270)/(180))`
= `sqrt(4770/180)`
`= sqrt26.5`
= 5.15