Advertisements
Advertisements
Question
The minimum speed in m/s with which a projectile must be thrown from origin at ground so that it is able to pass through a point P (30 m, 40 m) is ______. (g = 10 m/s2)
Options
10
20
30
40
Solution
The minimum speed in m/s with which a projectile must be thrown from origin at ground so that it is able to pass through a point P (30 m, 40 m) is 30. (g = 10 m/s2)
Explanation:
Let the velocity of the projectile be u co-ordinate of the point P = (30 m, 40 m)
Trajector of the projectile
y = x tan θ - `1/2 "g" x^2/("u"^2costheta)`
Now, y = 40, x = 30
Substituting the values
40 = 30 tan θ - `1/2xx10xx30^2/(4^2cos^2 theta)`
40 = 30 tan θ - `(10xx900)/(2"u"^2)(1+tan^2theta)`
⇒ 8u2 = 2 × 3u2 tan θ – 900 (1 + tan2 θ)
⇒ 900 tan2 θ – 6u2 tan θ + (8u2 + 900) = 0
For real value of θ,
if b2 – 4ac ≥ 0
⇒ (6u2)2 ≥ 4 × 900 × (8u2 + 900)
⇒ 36u4 ≥ 3600 (8u2 + 900)
⇒ u4 ≥ 100(8u2 + 900)
⇒ u4 ≥ 800u2 + 90000
⇒ u4 – 800u2 ≥ 90000
⇒ u4 – 2 × 400u2 + 4002 ≥ 250000
⇒ (u2 – 400)2 ≥ 250000
⇒ u2 – 400 ≥ 500
⇒ u2 ≥ 900
⇒ u ≥ 30 m/s