English

The minimum value of 2sinx + 2cosx is ______. -

Advertisements
Advertisements

Question

The minimum value of 2sinx + 2cosx is ______.

Options

  • `2^(-1 + 1/sqrt(2))`

  • `2^(-1 + sqrt(2))`

  • `2^(-1 - sqrt(2))`

  • `2^(1 - 1/sqrt(2))`

MCQ
Fill in the Blanks

Solution

The minimum value of 2sinx + 2cosx is `underlinebb(2^(1 - 1/sqrt(2))`.

Explanation:

`(2^(sinx) + 2^(cosx))/2 ≥ (2^(sinx + cosx))^(1/2)`  ...(∵ AM ≥ GM)

`\implies 2^(sinx) + 2^(cosx) ≥ 2.2^((sinx + cosx)/2)` 

Since, `-sqrt(2) ≤ sinx + cos x ≤ sqrt(2)`

∴ Minimum value of `2^((sinx + cosx)/2) = 2^(1/sqrt(2))` 

`\implies 2^(sinx) + 2^(cosx) ≥ 2^(1 - 1/sqrt(2))`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×