Advertisements
Advertisements
Question
The minimum value of 2sinx + 2cosx is ______.
Options
`2^(-1 + 1/sqrt(2))`
`2^(-1 + sqrt(2))`
`2^(-1 - sqrt(2))`
`2^(1 - 1/sqrt(2))`
MCQ
Fill in the Blanks
Solution
The minimum value of 2sinx + 2cosx is `underlinebb(2^(1 - 1/sqrt(2))`.
Explanation:
`(2^(sinx) + 2^(cosx))/2 ≥ (2^(sinx + cosx))^(1/2)` ...(∵ AM ≥ GM)
`\implies 2^(sinx) + 2^(cosx) ≥ 2.2^((sinx + cosx)/2)`
Since, `-sqrt(2) ≤ sinx + cos x ≤ sqrt(2)`
∴ Minimum value of `2^((sinx + cosx)/2) = 2^(1/sqrt(2))`
`\implies 2^(sinx) + 2^(cosx) ≥ 2^(1 - 1/sqrt(2))`
shaalaa.com
Is there an error in this question or solution?