Advertisements
Advertisements
Question
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is ______.
Options
(x + y)cosθ + (x – y)sinθ = 0
(x + y)cosθ + (x – y)sinθ = a
(x + y)cosθ – (x – y)sinθ = 0
(x + y)cosθ – (x – y)sinθ = a
Solution
The normal of the curve given by the equation x = a(sinθ + cosθ), y = a(sinθ – cosθ) at the point θ is (x + y)cosθ – (x – y)sinθ = 0.
Explanation:
x = a(sinθ + cosθ), y = a(sinθ – cosθ)
Differentiating above functions w.r.t.θ, we get
`(dx)/(dθ)` = a(cosθ – sinθ)
`(dy)/(dθ)` = a(cosθ + sinθ)
`(dy/(dθ))/(dx/(dθ)) = (dy)/(dx)`
= `(a(cosθ + sinθ))/(a(cosθ - sinθ))`
`(dy)/(dx) = (cosθ + sinθ)/(cosθ - sinθ)`
Slope of normal = `-1/((dy/dx))`
= `-((cosθ - sinθ))/((cosθ + sinθ))`
= `((sinθ - cosθ))/((sinθ + cosθ))`
Equation of normal
y – a(sinθ – cosθ) = `(sinθ - cosθ)/(sinθ + cosθ)` [x – a(sinθ + cosθ)]
y(sinθ + cosθ) – a(sinθ – cos2θ) = x(sinθ – cosθ) – a(sin2θ – cos2θ)
⇒ y(sinθ + cosθ) = x(sinθ – cosθ)
⇒ (y – x)sinθ + (y + x)cosθ = 0
⇒ (x + y)cosθ – (x – y)sinθ = 0