English

The number of positive integers satisfying the inequality n+1Cn-2-n+1Cn-1≤100 is ______. -

Advertisements
Advertisements

Question

The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is ______.

Options

  • Nine

  • Eight

  • Five

  • Ten

MCQ
Fill in the Blanks

Solution

The number of positive integers satisfying the inequality `""^(n+1)C_(n-2) - ""^(n+1)C_(n-1) ≤ 100` is nine.

Explanation:

`""^((n+1))C_((n-2)) - ""^((n+1))C_((n-1)) ≤ 100`

⇒ `((n + 1)!)/((n - 2)!(n + 1 - n + 2)!) - ((n + 1)!)/((n - 1)!(n + 1 - n + 1)!) ≤ 100`

⇒ `((n + 1)!)/((n - 2)!3!) - ((n + 1)!)/((n - 1)!2!) ≤ 100`

⇒ `(n + 1)![1/(3!(n - 2)!) - 1/(2!(n - 1)!)] ≤ 100`

⇒ `(n + 1)![((n - 1)! - 3(n - 2)!)/(6(n - 1)!(n - 2)!)] ≤ 100`

⇒ `((n + 1)[(n - 1)(n - 2)! -3(n - 2)!])/(6(n - 1)!(n - 2)!) ≤ 100`

⇒ `(n(n + 1)[(n - 1)(n - 2)!(n - 1 - 3)])/(6(n - 1)!(n - 2)!) ≤ 100`

⇒ `(n(n + 1)[(n - 1)(n - 2)!(n - 4)])/(6(n - 1)!(n - 2)!) ≤ 100`

⇒ n(n + 1)(n – 4) ≤ 600

Put n = 1, 2, 3, 4, 5, 6, 7, 8, 9, ......

For n = 5 ⇒ 600 ≥ 5 × 6 × 1 Holds good

For n = 8 ⇒ 600 ≥ 8 × 9 × 4 = 288 Holds good

For n = 9 ⇒ 600 ≥ 9 × 10 × 5 = 450 Holds good

For n = 10 ⇒ 600 ≤ 10 × 11 × 7 = 770 Does not hold

Hence, the number of positive integers which is satisfying the given in quality must be 9.

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×