English

The number of solutions of cos 2θ = sin θ in (0, 2π) is ______ -

Advertisements
Advertisements

Question

The number of solutions of cos 2θ = sin θ in (0, 2π) is ______

Options

  • 1

  • 2

  • 3

  • 4

MCQ
Fill in the Blanks

Solution

The number of solutions of cos 2θ = sin θ in (0, 2π) is 3.

Explanation:

cos 2θ = sin θ ⇒ 1 - 2 sin2θ = sin θ

⇒ 2sin2θ + sinθ - 1 = 0 

⇒ (2sin θ - 1)(sin θ + 1) = 0

⇒ sin θ = `1/2` or sin θ = -1

∴ sin θ = `1/2` = sin`pi/6 ⇒ theta = npi + (-1)^n pi/6`

and sin θ = -1 = sin`(3pi)/2`

⇒ `theta = mpi + (-1)^m (3pi)/2`

∴ `theta = pi/6, (5pi)/6, (3pi)/2`

∴ number of solutions = 3

shaalaa.com
Trigonometric Equations and Their Solutions
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×