Advertisements
Advertisements
Question
The number of solutions of cos 2θ = sin θ in (0, 2π) is ______
Options
1
2
3
4
MCQ
Fill in the Blanks
Solution
The number of solutions of cos 2θ = sin θ in (0, 2π) is 3.
Explanation:
cos 2θ = sin θ ⇒ 1 - 2 sin2θ = sin θ
⇒ 2sin2θ + sinθ - 1 = 0
⇒ (2sin θ - 1)(sin θ + 1) = 0
⇒ sin θ = `1/2` or sin θ = -1
∴ sin θ = `1/2` = sin`pi/6 ⇒ theta = npi + (-1)^n pi/6`
and sin θ = -1 = sin`(3pi)/2`
⇒ `theta = mpi + (-1)^m (3pi)/2`
∴ `theta = pi/6, (5pi)/6, (3pi)/2`
∴ number of solutions = 3
shaalaa.com
Trigonometric Equations and Their Solutions
Is there an error in this question or solution?