Advertisements
Advertisements
Question
The number of solutions of sin x + sin 3x + sin 5x = 0 in the interval `[pi/2, (3pi)/2]` is ______.
Options
2
3
4
5
MCQ
Fill in the Blanks
Solution
The number of solutions of sin x + sin 3x + sin 5x = 0 in the interval `[pi/2, (3pi)/2]` is 3.
Explanation:
sin x + sin 3x + sin 5x = 0
⇒ sin 5x + sin x + sin 3x = 0
⇒ 2 sin 3x cos 2x + sin 3x = 0
⇒ sin 3x (2 cos 2x + 1) = 0
⇒ sin 3x = 0 or 2 cos 2x = –1
⇒ 3x = nπ or cos 2x = `(-1)/2`
⇒ x = `("n"pi)/3` or cos 2x = `- cos pi/3`
cos 2x = `cos(pi - pi/3)`
cos 2x = `cos (2pi)/3`
2x = `2"n"pi +- (2pi)/3`
x = `"n"pi +- pi/3`
⇒ x = `pi, (2pi)/3, (4pi)/3` ......`[because x ∈ [pi/2, (3pi)/2]]`
shaalaa.com
Trigonometric Equations and Their Solutions
Is there an error in this question or solution?