English

The order and degree of n + 1ndydxndydx(n + 1n)d4ydx4=[n+(d2ydx2)4]3/5 are respectively. -

Advertisements
Advertisements

Question

The order and degree of `(("n + 1")/"n")("d"^4"y")/"dx"^4 = ["n" + (("d"^2"y")/"dx"^2)^4]^(3//5)` are respectively.

Options

  • 4, 5

  • 4, 3

  • 2, 5

  • 4, 2

MCQ

Solution

4, 5

Explanation:

`(("n + 1")/"n")("d"^4"y")/"dx"^4 = ["n" + (("d"^2"y")/"dx"^2)^4]^(3//5)`

`=> [(("n + 1")/"n")("d"^4"y")/"dx"^4]^5 = {["n" + (("d"^2"y")/"dx"^2)^4]^(3//5)}^5`

`=> (("n + 1")/"n")^5(("d"^4"y")/"dx"^4)^5 = ["n" + (("d"^2"y")/"dx"^2)^4]^3`

Here, the highest order derivative is `("d"^4"y")/"dx"^4` with power 5.

∴ order = 4 and degree = 5

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×