Advertisements
Advertisements
Question
The overall formation constant for the reaction of 6 mol of CN- with Cobalt (II) is 1 × 1019. The formation constant for the reaction of 6 mol of CN- with Cobalt (III) is ______ × 1063. Given that,
\[\ce{CO(CN)^{- 3}_6 + e^-1 -> Co(CN)^{-4}_6}\]
\[\ce{E^{\circ}_{R_p}}\] = 0.83 V
\[\ce{Co^{+3} + e^{- 1} -> Co^{+2}}\]
\[\ce{E^{\circ}_{R_p}}\] = 1.82 V
Options
5.63
2.30
8.23
9.36
Solution
The overall formation constant for the reaction of 6 mol of CN- with Cobalt (II) is 1 × 1019. The formation constant for the reaction of 6 mol of CN- with Cobalt (III) is 8.23 × 1063.
Explanation:
\[\ce{[CO (CN)_6]^{4-} -> [CO (CN)_6]^{3-} + e^-}\]
\[\ce{CO^{3+} + e -> CO^{2+}}\]
\[\ce{[CO (CN)_6]^{4-} + CO^{3+} <=> CO^{2+} + [CO (CN)_6]^{3-}}\]
Ecell = `"E"_"cell"^circ + 0.059/1 log_10 (["Co"^(3+)]["Co" ("CN")_6]^(4-))/(["Co"^(2+)]["Co" ("CN")_6]^(3-))`
= `"E"_"cell"^circ + 0. 0.59/1 log_10 (["Co"^(3+)]["Co" ("CN")_6]^(4-)["CN"^-]^6)/(["Co"^(2+)]["Co" ("CN")_6]^(3-)["CN"^-]^6)`
= `"E"_"cell"^circ + 0.059/1 log_10 (["Co"^(3+)]["CN"^-]^6)/(["Co"("CN")_6]^(3-)) xx /((["Co"^(2+)]["CN"]^6)/(["Co" ("CN")_6]^(-4)))`
= `"E"_"cell"^circ + 0.059/1 log_10 ("K"_("f"_1))/("K"_("f"_2)) "K"_("f"_1) = [[("Co" ("CN")_6]^(4-))/(["Co"^(2+)]["CN"^-]^6)` `["K"_("f"_1) = ("Co"("CN")_6)^(3-)/(["Co"^(3+)][("CN"^-]^6))]`
`0 = 0.83 + 1.82 + 0.059/1 log_10 10^19/"K"_("f"_2)`
`=> "K"_("f"_2)/10^19 = 8.23 xx 10^44`
`=> "K"_("f"_2) = 8.23 xx 10^63`