Advertisements
Advertisements
Question
The paint in a certain container is sufficient to paint on area equal to 9.375 m2. How manybricks of dimension 22.5 cm × 10 cm × 7.5 cm can be painted out of this container?
Solution
We know that
Total surface area of one brick = 2 (lb + bh + hl )
`=2[22.5xx10+10xx7.5+22.5xx7.5]cm^2`
`=2[468.75]cm^2`
`=937.5cm^2`
Let n number of bricks be painted by the container
Area of brick= `937 .50 cm^2`
Area that can be painted in the container
`= 93755m^2= 93750cm^2`
`93750 = 93750cm^2`
`n=100`
Thus, 100 bricks can be painted out by the container.
APPEARS IN
RELATED QUESTIONS
Find the volume in cubic metre (cu. m) of the cuboid whose dimensions islength = 4 m, breadth = 2.5 m, height = 50 cm.
Find the length of the longest rod that can be placed in a room 12 m long, 9 m broad and 8 m high.
Three cubes of each side 4 cm are joined end to end. Find the surface area of the resulting cuboid.
If l is the length of a diagonal of a cube of volume V, then
A closed box is cuboid in shape with length = 40 cm, breadth = 30 cm and height = 50 cm. It is made of a thin metal sheet. Find the cost of metal sheet required to make 20 such boxes, if 1 m2 of metal sheet costs Rs. 45.
A room 5 m long, 4.5 m wide, and 3.6 m high have one door 1.5 m by 2.4 m and two windows, each 1 m by 0.75 m. Find :
(i) the area of its walls, excluding door and windows ;
(ii) the cost of distempering its walls at the rate of Rs.4.50 per m2.
(iii) the cost of painting its roof at the rate of Rs.9 per m2.
Find the volume of a cuboid whose diagonal is `3sqrt(29)"cm"` when its length, breadth and height are in the ratio 2 : 3 : 4.
The dimensions of a cuboidal box are 6 m × 400 cm × 1.5 m. Find the cost of painting its entire outer surface at the rate of ₹ 22 per m2.
Find the length of the largest pole that can be placed in a room of dimensions 12 m × 4 m × 3 m.