Advertisements
Advertisements
Question
The perimeter of ΔABC is 20, ∠A = 60°, area of ΔABC = `10sqrt(3)`, then find the values of a, b, c.
Sum
Solution
a + b + c = 20,
A(ΔABC) = `10sqrt(3)`
∠A = 60°
Area of triangle = `1/2 bc sin A`
∴ `10sqrt(3) = 1/2 bc * sqrt(3)/2`
∴ bc = 40
Also cos A = `(b^2 + c^2 - a^2)/(2bc)`
i.e. a2 = b2 + c2 – 2bc cos A
i.e. a2 = `b^2 + c^2 - 2(40)(1/2)`
∴ a2 = b2 + c2 – 40
∴ a2 = (b2 + c2 + 2bc) – 2bc – 40
∴ (b + c)2 – 2(40) – 40
∴ (20 – a)2 – 120 ...(∵ a + b + c = 20)
∴ a2 = 400 – 40a + a2 – 120
∴ 40a = 280,
∴ a = 7
But a + b + c = 20
∴ b + c = 13 and bc = 40
∴ b(13 – b) = 40
∴ b2 – 13b + 40 = 0
∴ (b – 8)(b – 5) = 0
∴ b = 8 or b = 5
From bc = 40
When b = 8 `\implies` c = 5 and
When b = 5 `\implies` c = 8
∴ a, b, c are 7, 8, 5 or 7, 5, 8 respectively.
shaalaa.com
Is there an error in this question or solution?