Advertisements
Advertisements
Question
The position vectors of vertices of ΔABC are `4hati - 2hatj; hati + 4hatj - 3hatk` and `-hati + 5hatj + hatk` respectively, then ∠ABC = ______.
Options
`π/2`
`π/4`
`π/6`
`π/3`
Solution
The position vectors of vertices of ΔABC are `4hati - 2hatj; hati + 4hatj - 3hatk` and `-hati + 5hatj + hatk` respectively, then ∠ABC = `underlinebb(π/2)`.
Explanation:
Let position vectors of ΔABC are
A = `4hati - 2hatj`, B = `hati + 4hatj - 3hatk`, C = `-hati + 5hatj + hatk`
Let ∠ABC = θ
`\implies` BA . BC = | BA | | BC | cos θ
`\implies` cos θ = `(BA . BC)/(|BA| |BC|)`
BA = OA – OB
= `(4hati - 2hatj) - (hati + 4hatj - 3hatk)`
= `3hati - 6hatj + 3hatk`
BC = OC – OB
= `(-hati + 5hatj + hatk) - (hati + 4hatj - 3hatk)`
= `-2hati + hatj + 4hatk`
BA . BC = – 6 – 6 + 12 = 0
Now, cos θ = `(BA . BC)/(|BA||BC|)` = 0 ...[∵ BA . BC = 0]
`\implies` θ = `π/2`