Advertisements
Advertisements
Question
The simplest form of `tan^-1 [(sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))]` is ______.
Options
`π/4 - x/2`
`π/4 + x/2`
`π/4 - 1/2 cos^-1x`
`π/4 + 1/2 cos^-1x`
Solution
The simplest form of `tan^-1 [(sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))]` is `underlinebb(π/4 - 1/2 cos^-1x)`.
Explanation:
We have,
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x)))`
Put x = cos 2θ, so that `θ = 1/2 cos^-1x`
`tan^-1 ((sqrt(1 + cos 2θ) - sqrt(1 - cos 2θ))/(sqrt(1 + cos 2θ) + sqrt(1 - cos 2θ)))`
= `tan^-1 ((sqrt(2cos^2θ) - sqrt(2sin^2θ))/(sqrt(2cos^2θ) + sqrt(2sin^2θ)))`
= `tan^-1 ((cos θ - sin θ)/(cos θ + sin θ))`
= `tan^-1 ((1 - tan θ)/(1 + tan θ))`
= tan–1(1) – tan–1(tan θ) ...`[∵ tan^-1 ((x - y)/(1 + xy)) = tan^-1x - tan^-1y]`
= `tan^-1(tan π/4) - θ`
= `π/4 - 1/2 cos^-1x`