English

The smallest positive integer n for which (1+i1-i)n = –1 is ______. -

Advertisements
Advertisements

Question

The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.

Options

  • 1

  • 2

  • 3

  • 4

MCQ
Fill in the Blanks

Solution

The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is 2.

Explanation:

`((1 + i)/(1 - i))^n = [((1 + i))/((1 - i)) xx ((1 + i))/((1 + i))]^n`

= `[(1 + i)^2/(1 + 1)]^n`

= `[(1 - 1 + 2i)/2]^n`

= (i)n

Smallest positive integer must be 2 so that `((1 + i)/(1 - i))^n` = –1   ...[∵ i2 = –1]

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×