Advertisements
Advertisements
Question
The solution of the differential equation, `(dy)/(dx)` = (x – y)2, when y (1) = 1, is ______.
Options
`log_e |(2 - x)/(2 - y)|` = x – y
`-log_e |(1 - x + y)/(1 + x - y)|` = 2(x – 1)
`-log_e |(1 + x - y)/(1 - x + y)|` = x + y – 2
`log_e |(2 - y)/(2 - x)|` = 2(y – 1)
Solution
The solution of the differential equation, `(dy)/(dx)` = (x – y)2, when y (1) = 1, is `underlinebb(-log_e |(1 - x + y)/(1 + x - y)| = 2(x - 1))`.
Explanation:
The given differential equation
`(dy)/(dx)` = (x – y)2 ...(i)
Let x – y = t
`\implies 1 - (dy)/(dx) = (dt)/(dx)`
`\implies (dy)/(dx) = 1 - (dt)/(dx)`
Now, from equation (i)
`(1 - (dt)/(dx))` = (t)2
`\implies` 1 – t2 = `(dt)/(dx)`
`\implies intdx = int (dt)/(1 - t^2)`
`\implies` x = `1/(2 xx 1) log|(1 + t)/(1 - t)| + c`
`\implies` x = `1/2 log|(1 + x - y)/(1 - (x - y))| + c` ...(ii)
`\implies` x = `1/2 log|(1 + x - y)/(1 - (x - y))| + c`
From given condition y(1) = 1
1 = `1/2 log|(1 + 1 - 1)/(1 - (1 - 1))| + c`
`\implies` c = 1 ...(ii)
∴ From equation
x = `1/2 log|(1 + x - y)/(1 - x + y)| + 1`
`\implies` 2(x – 1) = `-log|(1 - x + y)/(1 + x - y)|`