Advertisements
Advertisements
Question
The sum of the digits of a two-digit number is 12. The number obtained by interchanging its digits exceeds the given number by 18. Find the number.
Solution
Let the tens and the units digits of the required number be x and y, respectively.
Required number = (10x + y)
x + y = 12 ……….(i)
Number obtained on reversing its digits = (10y + x)
∴ (10y + x) - (10x + y) = 18
⇒10y + x – 10x – y = 18
⇒9y – 9x = 18
⇒y – x = 2 ……..(ii)
On adding (i) and (ii), we get:
2y = 14
⇒y = 7
On substituting y = 7 in (i) we get
x + 7 = 12
⇒ x = (12 - 7) = 5
Number = (10x + y) = 10 × 5 + 7 = 50 + 7 = 57
Hence, the required number is 57.
APPEARS IN
RELATED QUESTIONS
For what value of k, the following system of equations will represent the coincident lines?
x + 2y + 7 = 0
2x + ky + 14 = 0
Solve for x and y:
`x + y = a + b, ax - by = a^2 - b^2`
Solve for x and y:
`a^2x + b^2y = c^2, b^2x + a^2y = d^2`
For what value of k, the system of equations
x + 2y = 5,
3x + ky + 15 = 0
has (i) a unique solution, (ii) no solution?
Find the values of a and b for which the system of linear equations has an infinite number of solutions:
2x + 3y = 7, (a + b + 1)x - (a + 2b + 2)y = 4(a + b) + 1.
If three times the larger of two numbers is divided by the smaller, we get 4 as the quotient and 8 as the remainder. If five times the smaller is divided by the larger, we get 3 as the quotient and 5 as the remainder. Find the numbers.
A man invested an amount at 10% per annum simple interest and another amount at 10% per annum simple interest. He received an annual interest of Rs. 1350. But, if he had interchanged the amounts invested, he would have received Rs. 45 less. What amounts did he invest at different rates?
The monthly incomes of A and B are in the ratio of 5:4 and their monthly expenditures are in the ratio of 7:5. If each saves Rs. 9000 per month, find the monthly income of each.
Solve for x:
3x2-2x-83=0
Solve the following for x:
`1/(2a+b+2x)=1/(2a)+1/b+1/(2x)`